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An Analysis of Wake-Stator
Interaction in Airfoil Cascades

Summary

A computational study has been conducted in order to provide insight

into the details

of the unsteady flow in the leading-edge region of airfoil cascades during wake-stator inter-
action. The calculations are performed at off-design operating conditions, since the flow at
conditions near to those at which stall onset occurs is of particular interest in helping to
understand the mechanisms responsible for compressor stall. A thorough understanding of
these mechanisms will provide the underpinnings needed to design compressors with favor-
able stall characteristics, using fewer design iterations than are typical with the present state

of the art. The results obtained during this study show that the use of hig

hly refined grids

Jeads to the resolution of complex unsteady phenomena associated with wake-stator interac-
tion. The structure of the interaction is shown to change significantly as the magnitude of the
wake deficit is increased, with shedding from the leading-edge separation bubble suppressed
compared to that observed for the cases with small wake deficit or no wake disturbance.
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1. Introduction

Turbomachinery components such as turbines and compressors are characterized by the
presence of circumferentially nonuniform flow due to nonaxisymmetric disturbances at the
inlet and exit of the components, and due to wakes and potential-flow effects of the individual
blades within each blade row of the turbine and compressor. The relative motion of the stator
and rotor blade rows produces periodic interactions between adjacent blade rows resulting in
unsteadiness within the flow field. The unsteadiness within turbines and compressors affects
their performance, stability and durability; the latter two are related to the “operability” of
the engine. .

The problem at the focus of this effort is the breakdown of the suction-surface boundary
layer on compressor stator blades caused by the unsteady interaction with wakes from the
upstream rotor, and the subsequent near-term evolution of the vortical structures that erupt
from the boundary layer during its breakdown. For the particular cases considered herein the
compressor cascade is operating, in the absence of the upstream wakes (which will be referred
to hereafter as the “undisturbed” condition), at an off-design incidence condition for which the
flow is separated. At the undisturbed condition small-scale unsteadiness associated with the
separation bubble is observed. However, this unsteady effect is smaller than that associated
with the wake passing. Furthermore, the Reynolds number, Re = p1ViC/p1, where the
subscript “1” denotes the circumferentially-averaged value from the steady baseline solution
(i.e., the solution obtained in the absence of upstream wakes), is assumed to be small enough
that the flow can be taken to be laminar in the neighborhood of the suction-surface leading
edge for the purpose of this investigation. This assumption is made in order to reduce the
uncertainties associated with turbulence modeling as much as possible. Transition is imposed
downstream of the neighborhood of interest, in the vicinity of the suction-surface leading-
edge and near the leading edge of the pressure surface; it is believed that this will have
a negligible effect on the local wake/boundary-layer interactions calculated as part of this
study. We recognize that the effect of the rotor wakes on transition can be quite significant,
as discussed in the work of Hodson [1], for example. However, because the principal intent
of this study is to examine the local flow behavior associated with the interaction of the
wake with the suction-surface boundary layer at off-design conditions, and issues associated
with transition are beyond the scope of this investigation, the simple assumption of a fixed
transition location is made.

The wake-stator interaction is modeled herein within the context of a single blade-row
analysis by introducing a simulated wake at the upstream boundary of the computational
domain containing a single stator airfoil. This approach neglects the potential effect as-
sociated with the pressure disturbances of the adjacent rotor blades that are moving with
respect to the stator blade row. Since the focus of this study is on the interaction of the wake
with the stator boundary-layer, the present approach remains consistent despite this. The
inlet wake profile is translated in the circumferential direction, simulating the motion of an
upstream rotor in the frame of reference of the stator. The wake is convected downstream at
the local flow velocity, impinging on the leading edge and washing over the stator suction-
and pressure-surface boundary layers. Once the wake enters the blade passage it migrates
away from the suction surface towards the pressure surface, a phenomena which is due to




the excess of circumferential velocity within the wake [2]. As this high vorticity fluid passes
over the leading-edge region it can induce an eruption of vorticity from the suction-surface
boundary layer, which is susceptible to breakdown in the region of adverse pressure gradient
near the blade leading edge.

The focus of the present investigation is on the aforementioned wake/boundary-layer
interaction occurring on stators operating at off-design conditions, and particularly on the
mechanisms associated with the interaction of the wake with the suction-surface boundary
layer in the leading-edge region, where an adverse pressure gradient exists. Therefore, it
is not the intent of this effort to study the evolution of the flow within the stator passage
after the initial eruption phase, although this 1s an interesting problem, as shown in the
studies by Valkov [3] and Valkov and Tan [4], for example. In those references the authors
examined the details of the interaction of the rotor wakes with the stator boundary layer.
However, in contrast to the present study, they did not attempt to resolve the small-scale
structure of boundary layer during the interaction, but focused more on the overall structural
evolution of the flow features. In the report of Valkov (3] the wake-stator interaction was
investigated under a variety of conditions, including the effects of variations in incidence,
Reynolds number and wake velocity deficit.

Because the local structure of unsteady wake/ boundary-layer interaction phenomena are
the focus of this investigation, it will be assumed that the choice of rotor-stator blade ratio
will not significantly alter the qualitative behavior of the interaction, allowing us to limit
the calculations to a single blade passage, significantly Teducing the computational effort
required relative to multiple-passage calculations. One consequence of this, however, is that
the interaction between the wakes and the stators produces a disturbance (i.e., a “response”)
that propogates upstream without decay (in theory, though not necessarily in computations),
and influences the incoming wakes. This issue will be discussed further in the Results section.
Finally, it is assumed that the flow is two-dimensional in order to keep the scope of the
problem manageable in terms of the resources required to perform the numerical simulations.

The problem considered herein is similar in some ways to that studied by Peridier, et al
[5,6], who considered the eruption of vorticity from a flat-plate boundary layer over which
a vortex is convected. There is also a relationship between the present problem and that
investigated by Reisenthal, et al [7,8], who considered the model problem of a stationary, two-
dimensional airfoil at non-zero angle of attack for which a no-slip surface boundary condition
was impulsively applied, producing a leading-edge separation. Another study that addressed
some issues that are relevant to this investigation is that of Bhaskaran and Rothmayer [9],
who considered the onset of unsteady leading-edge separation on pitching and oscillating
airfoils. An examination of the papers cited above and other investigations in this general
area indicates that, when laminar vortical eruptions occur, many of the local flow features
are qualitatively the same, regardless of differences in the nature of the global flow field.

Because this investigation is focused on off-design operating conditions, it is hoped that
the results may aid in the ongoing efforts to better understand the detailed mechanisms of
stall onset. Stall onset has been the subject of numerous experimental, theoretical, and com-
putational investigations during the last several years, many of which have been focused on
isolated airfoil stall associated with helicopter rotors and highly maneuverable flight vehicles.
The extensive reviews by Carr [10] and Carr and McCroskey [11], for example, provide an
overview of experimental studies that have helped to increase the level of understanding of
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stall phenomena, and also include reviews of related theoretical and computational studies.
Several recent theoretical studies have shed light on various aspects of stall onset. In partic-
ular, asymptotic (Reynolds number, Re — o) analyses (e.g., Refs. 5, 12-14) and finite-Re
analyses of stall and related phenomena (e.g., Refs. 6 and 9) have provided important in-
sights into some of the details of stall onset and vortex eruptions on airfoils, have aided in
identifying the dominant terms in the governing equations during various stages of stall on-
set, and have revealed the critical length and time scales as they change during the evolution
of the stall vortex from pre-inception to eruption. Doligalski noted, in his recent review of
CFD challenges faced in problems of relevance to the U.S. Army [15], that the necessity of
resolving the many disparate length and time scales that arise in problems with unsteady
separation and/or stall remains a. significant hindrance to achieving accurate computational
solutions for such problems. Clearly, the identification of the critical length and time scales
provided by the relevant theoretical studies is a crucial step towards addressing this issue.

The detailed relationship between the phenomenon of turbomachinery compressor stall,
which usually occurs when a compressor is operating at severe off-design conditions, and iso-
lated airfoil stall, which has been the focus of most of the studies cited above, is not clear at
the present time. It is known that a dramatic increase in flow losses (due to end wall and/or
airfoil separation) in compressors can lead to the loss of overall compression-system stability
resulting in either rotating stall or surge. However, due to the complexity of compression-
system dynamics, wherein the Joss of stability is dependent on several compression-system
_parameters, the precise connection between boundary-layer separation and [or vortical erup-
tions and compressor stall/surge is not yet understood in detail. Ultimately, the ability to
control compressor stall/surge, which would significantly enhance the operability of turbo-
machinery, will require continuing advances in the understanding of the physical processes
associated with stall. The current absence of any widespread use of effective stall-control
methods in real-world engineering applications, despite the high potential payoff, supports
to the need for further research in this area.

Navier-Stokes CFD analyses have been applied in numerous studies of stall and related
phenomena. Some examples can be found in the papers of Choudhuri, et al. [16], Mehta
[17], Ghia, et al 18], Visbal (19], and Patterson and Lorber [20]. In addition, the papers
of Reisenthel and Childs [7] and Reisenthel [8] are interesting because of their use of a
higher-order accurate (eighth-order spatial, third-order temporal) numerical scheme and the
very careful attention that was paid to validating the grid convergence properties of their
unsteady solutions.

The problem of turbomachinery blade-row interaction has been studied experimentally,
theoretically and computationally by numerous investigators over the last two decades. For
some examples, see the review paper by Verdon [21] and the papers by Kerrebrock and
Mikolajczak [2], Dring et al. [22], Hodson [23], Rai [24], Giles [25], Valkov [3] and Valkov
and Tan [4].




2. Physical and Mathematical Models

The physical model in this study considers time-dependent flow, with negligible body
forces, of a calorically perfect gas through two-dimensional blade rows. The field equations
considered in this investigation are the time-dependent Navier-Stokes equations. The govern-
ing equations can be written in non-dimensional form and in terms of body-fitted coordinates
as

Q, + (Fi + Be'F,) + (Gi+ Be™'Gy) =0 (2.1)

where the subscripts i refer to inviscid quantities, the subscripts v refer to viscous quanti-
ties, the subscripts £ and 7 refer to derivatives with respect to the body-fitted coordinate
directions, and Re is the Reynolds number. The vector of conserved variables is

Q=710 (2:2)

and the inviscid flux vectors are
F. = JY&Q +&F: +€6,G) (2.3)
G; = J'(nQ+nFi +1,Gi) (2.4)

The Jacobian of the transformation (from physical Cartesian (z,y) to computational curvi-
linear (£,7) coordinates) and the other metric quantities are given by

J = TeYn — YeZn (2:5)
€& = yn/J, §y = —.’1:.,7/J, Nz = —yg/J, My = xf/'] (26)

In the Cartesian coordinate frame, the conserved variable and inviscid flux vectors are defined
as

Q@ = lppupvied
F; = [pu, pu? + P, puv, (e; + P)U]T (2.7)

_ T
Gi = [Pv’ puv, pv2 + Pa (et + P)U]

where p is the density, u and v are the Cartesian velocity components, P is the thermody-
namic pressure, and e, is the total internal energy.

An eddy viscosity formulation is used to model turbulent phenomena. The effective
viscosity and effective thermal conductivity are defined as

p=pr+pr  &/c=pr/Pro+pr/Prr (2.8)

where  is the thermal conductivity, ¢, is the ratio of specific heats, and the subscripts L
and T refer to the laminar (molecular) and turbulent (eddy) quantities, respectively. The
turbulent viscosity, gr, for the surface boundary layers is calculated using the two-layer
Baldwin-Lomax algebraic turbulence model [26].

In the present study the location of transition is specified, rather than modeled. In
addition to the location at which transition begins, the length of the transition region can be
specified as well. In the region between the beginning and end of transition an intermittency

function which varies between zero and one is specified according to the model of Dwahan
and Narasimha [27].




2.1 Solution Procedure

The numerical procedure for the two-dimensional analysis consists of a time marching,
implicit, third-order spatially accurate, second-order temporally accurate, upwind, finite-
difference scheme. The inviscid fluxes are discretized according to the scheme developed by
Chakravarthy and Osher [28]. The viscous fluxes are calculated using standard central dif-
ferences. An alternating direction, approximate-factorization technique is used to compute
the time rate changes in the primary variables. In addition, Newton sub-iterations can be
used at each global time step to increase stability and reduce linearization errors. Further
details of the numerical techniques can be found in Refs. 29,30 and 31.

2.2 Grid Generation

The numerical analyses use zonal grids to discretize the turbomachinery flow fields (see
Fig. 1). A combination of O- and H-grid sections are generated at constant radial spanwise
locations in the blade-to-blade direction extending upstream of the airfoil leading edge to
downstream of the airfoil trailing edge. Algebraically generated H-grids are used in the
regions upstream of the leading edge, downstream of the trailing edge and in the inter-blade
region. The O-grid, which is body-fitted to the surface of the airfoil and generated using
an elliptic equation solution procedure, is used to properly resolve the viscous flow in the
blade passages and to easily apply the algebraic turbulence model. Computational grid lines
within the O-grid are stretched in the blade-normal direction with a fine grid spacing at the
wall.

The construction of the algebraically generated H-type grids begins with the calculation
of the airfoil mean camberline. The mean camberline is extended upstream of the airfoil
leading edge and downstream of the airfoil trailing edge, using decay functions to control the
incremental changes in the axial and tangential distances. Half the blade pitch is added to
and subtracted from every computational grid point along the extended camberline to form
the first and last grid lines in the tangential direction. Computational grid lines are then
added at equal increments between the first and last grid lines in the tangential direction.

The generation of the O-type grids begins with the specification of four points on the
H-grid which delineate the outer boundary of the O-grid. The “box” which forms the outer
boundary of the O-grid is then smoothed to eliminate the discontinuities in the slope at
the corner points. The inner boundary of the O-grid is the surface of the airfoil. An initial
grid with uniform spacing is generated between the inner and outer boundaries. An elliptic
solution procedure, similar to that developed by Sorenson [32], is used to produce a nearly
orthogonal grid. The elliptic equations can be written as

QTee — 2Bzeq + YTy = —J? (Pze + Qz,) (2.9)
QYee — 2BYen + VYyn = —J? (PyE + Qyn) (2‘10)
where
a = T, 4y, (2.11)
B = zery, + YeYn (2.12)
v = x4y (2.13)
6
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and P, Q are forcing functions used to control computational grid point clustering and
orthogonality near solid walls. Equations (2.9) and (2.10) are solved using a successive line
over-relaxation (SLOR) technique. Finally, the grid points are algebraically redistributed
near the airfoil surface to resolve viscous layer quantities. Increasing the amount of grid
overlap enhances the stability and accuracy of the flow solution, but also increases the
aumber of redundant grid points in the calculation.

A modification was made to the grid generation procedure as part of the current inves-
tigation. Because of the need for a very fine streamwise grid in the region of interest the
clustering function was modified to allow the location, the streamwise extent and the degree
of clustering to be specified by the user.

2.3 Boundary Conditions

The inlet and exit boundary conditions used in the two-dimensional numerical analysis are
based on a characteristic analysis of the linearized Euler equations. In the numerical proce-
dure, quasi-two-dimensional characteristic boundary conditions are solved implicitly along
with the interior of the computational domain. An explicit update, based on fully two-
dimensional boundary conditions, is then used to increase solution accuracy. For viscous
flows, it is assumed that the computational inlet and exit are in regions where the flow is
predominantly inviscid, and the characteristic boundary conditions are retained. At solid
surfaces, a formulation based on the normal momentum equation, no-slip condition, and
specified heat transfer or wall temperature condition, is implemented for viscous flows. The
boundary conditions are explained in detail in the following sections.

2.3.1 Inlet Boundary Conditions

If the flow entering the computational domain is subsonic, then three characteristic waves
(an entropy wave, one pressure wave, and a vorticity wave) are entering the computational
domain and must be specified, while a fourth characteristic wave (a second pressure wave)
is leaving the computational domain and is calculated as part of the flow solution. Since
characteristic waves are sometimes difficult to measure experimentally, they are often re-
placed by other quantities which resemble their behavior and can be readily measured. In
particular, the entropy is often replaced by the total pressure (which simplifies the process
of maintaining a given mass flow rate, but can cause substantial pressure reflections), the
specified pressure wave is often replaced by the total temperature or a Riemann invariant,
and the vorticity wave is often replaced by the inlet flow angle. In the following discussions,
several of the alternative specifications are considered.

Implicit Inlet B.C.’s

The boundary conditions in the computational analysis are solved as part of the implicit so-
lution procedure, followed by a post-iteration correction to improve the accuracy of the solu-
tion. The following implicit solution procedure extends those developed by Chakravarthy [33]
and Rai and Chausee [34]. Consider an approximate factorization scheme, written in semi-




discretized form and utilizing only one Newton iteration
[I + At (8 A) [I + At (8,B)] AQ = —At (8¢ F + 9,G) (2.14)

where A and B are the fluid dynamic Jacobian matrices. Equation 2.14 can be solved by
the following procedure:

o Determine the residual as
AQ* = —At(8:F + 0,G) (2.15)
e Make a solution sweep parallel to the inlet boundary
[I + At(8,B) AQ™ = AQ” (2.16)
e Make a solution sweep normal to the inlet boundary
(I + At (F:A) AQ = AQ™ (2.17)

At the inlet boundary, the first two steps of this procedure are unchanged. The boundary
conditions are not enforced until the third step of the procedure. The boundary procedure
begins with the symbolic transformation of the governing equations into characteristic form
by premultiplying by the left eigenvectors, T;™' , of the A matrix

T, 1+ At (8cA) AQ = T AQ™ — (2.18)

Next, the equations of motion in characteristic form are premultiplied by a selection matrix,
which accounts for only the characteristic information which is leaving the computational
domain. For subsonic inflow the information associated with the upstream propagating
pressure wave leaves the computational domain, so the selection matrix becomes

00 0 0
00 0 0
Li=19 0 0 o (2.19)
0 0 0 1
and
LT+ LT A (0eA)] AQ = LT ' AQ™ (2.20)

The technique used to determine the boundary fluxes on the right-hand side of Eqn. (2.20)
is different than that used in the interior of the computational domain. At the boundary,
the fluxes in the n computational direction are calculated in the same manner as in the
interior of the computational domain, using Osher’s scheme. The fluxes in the ¢ direction
are calculated using second-order accurate one-sided differences. Thus, the fluxes at the
boundary are third-order accurate in the 7 direction, but only second-order accurate in the
¢ direction.

The boundary conditions corresponding to the positive eigenvalues are then symbolically
combined with the equations of motion as

[C + LT T+ LT At (0eA)] AQ = LT AQ™ + (o - a.7) (2.21)

8

L




where C = 89;/8Q is the Jacobian of the boundary variables with respect to the dependent
variables, and ® is the vector containing the boundary variables given by

| RTy (RY)
®; = v éﬂ) (2.22)

The variables in parentheses indicate the alternative characteristic variables discussed above.

The zero in the fourth row corresponds to the only non-zero entry of the inlet selection
matrix and indicates information that is determined by the equations of motion. The forcing
function (@;"‘H - <I>,-") will be zero for steady-state flow problems, and will have specified
values for unsteady flow problems.

The implicit boundary conditions outlined above represent approximate, quasi-two-dimensional,

nonreflecting boundary conditions which can be used for steady and unsteady flow simula-
tions.

Explicit Inlet B.C.’s

For steady flows, the two-dimensional, nonreflecting boundary condition theory of Giles [25,35]
can be used. According to this theory, the changes in the characteristic variables at each
point on the inlet boundary are comprised of an average change along the boundary and a
local change due to harmonic variations in the characteristic variables. -

The average changes are determined through the specification of the entropy, flow angle
(or tangential velocity), and the stagnation enthalpy. Thus,

Rl = 6s=35—-5_o (2.23)
R, = (pa)bv = (pa) (v — @ tanf_c) (2.24)
Ry = péH,=p(H.—H._.) (2.25)

where s = P/p" is the nonlinear entropy, 3 is the inlet flow angle, H, is the stagnation
enthalpy, and a is the speed of sound. The overbars denote average values.
The update to the average changes are determined using one step of a Newton-Raphson

procedure
5R1 " 5’1,51
SRy, 6
6R; O6Fs,68,88s) | g5 | — g (2.26)
§R3 6("1’1, Wy, 'w3) 6105
where w,, w;, w3, and wy are the characteristic variables
w, = —pa’+ P (2.27)
wy = pav (2.28)
w3 = pau + P (229)
wy = —pau+ P (2.30)

By inverting Eqn. 2.26, one can obtain the average changes to w;, wy, and ws. The local
contributions to the total changes, which are due to changes in the characteristic variables

9




along the boundary, are calculated with the aid of discrete Fourier transforms [35]. The
discrete Fourier transform of the outgoing characteristic, wq, is calculated as

1 Y —12njk
Wy = —N;w4je:vp (-——jv———) (231)

where N is the number of grid points along the inlet boundary. According to Giles [35], the
Fourier transform of the second characteristic is

_a+ M,
14+ M, |
a = isign(k)Vl—M? (2.33)

Wak (2.32)

Woks

The correct steady-state change in the second characteristic can then be transformed back
to the physical domain as

Nzt 12n3k
wajs = Y wzksezp( 1\; ) (2.34)
k:—N/2+1

The ideal correction to the second characteristic variable is then the difference between the
correct change and the current value.

6w2j.s = 752js — Waj (2-35)

The conditions that the local entropy and stagnation enthalpy should be equal to their
average values are used to determine the steady-state corrections to the first and third
characteristic variables [35].

§Ri; = s;—35 (2.36)
§Ry; = p(Htj—gt) (2.37)

Setting up a Newton-Raphson equation similar to Eqn. 2.26 and solving yields

5w1js = —le (238)

2 (L-bwy ;s + Mybwsyjs + Ra;j
bwajy = — (7 it 1+Ay4 i 3’> (2.39)

The total changes in the characteristic variables are then equal to the local changes plus the
average changes.

(S'U)lj = 0 (6’!1_)1 + 51.01]'5) (2.40)
611)2]‘ = 0 (6’(132 + 6’!1)2]‘5) (241)
6'LU3]‘ = O (5’(1—)3 + 5’(1)3_7‘5) (242)

In the above equations, o is an under-relaxation parameter used to assure the formulation
is well-posed [35]. Setting o = 1/N works well for most applications.

10
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The fourth characteristic variable, w,, is calculated using the interior flow algorithm,
or by linear extrapolation. Thus, having calculated the changes in the four characteristic
variables, the inlet values of the conservative flow variables can be updated.

For unsteady flows, fully two-dimensional explicit boundary conditions can also be for-
mulated based upon the work of Giles [35]. In this method, the characteristic variables are
written in perturbation form such that

w'y —a® 0 0 1 bp
wh | |0 0 pa O bu
ws{ |0 pa 0 1 bv (2.43)
w'y 0 —pa 0 1 j__ 5P
and
op —2M 0 M M w'y
bu | 110 0 N =N w'y
v | 210 2N 0 O w's (2.44)
6P 0 0 1 1 oo w'y

where M = 1/‘12, N = 1/(Pa)7 5/’ = P — Pinlet/exity ou=u~— Usnlet/exits v =uv— Vinlet/exits
and 6P = P — Pietfesit- The subscripts ‘—oo’ and ‘+oo’ refer to the underlying steady
flow variables at the inlet and the exit, respectively, and the subscripts ‘“nlet’ and ‘exit’
refer to the prescribed unsteady flow variables at the inlet and the exit boundary. The two-
dimensional boundary condition update calculates the changes in the incoming characteristic
waves based on the values of the outgoing characteristic waves [25,35]. Since the outgoing
characteristic waves are determined from the governing equations in the implicit portion of
the numerical procedure, these explicit boundary conditions are easily incorporated into the
framework of an implicit analysis. According to Giles [35], the incoming characteristics are
determined by

' wll

o | ¥ v 0 0 O ,

3 wy |+]10 v R Q 39- :‘;,2 =0 (2.45)
w'y 0 Qv 0] 7|,

where Q = (a —u)/2 and R = (a + u)/2. Equation 2.45 can be solved implicitly by
inverting a block tridiagonal matrix, where implicit second-difference dissipation is added to
the equations to prevent odd-even decoupling.

The prescribed unsteady flow variables at the inlet and exit boundaries can be determined
analytically [29,30], be based on experimental data, or be based on a previous numerical
solution. In the current investigation, the prescribed flow variables at the inlet/exit of a
given blade row are determined using the conditions from numerical simulations for the
adjacent upstream/downstream blade rows.

For characteristic waves leaving the computational domain at an angle 6 to the boundary,
the explicit two-dimensional boundary conditions described above will produce an artificially

reflected wave of amplitude O(6?), compared to O(8) for the quasi-two-dimensional boundary
conditions [35].
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2.3.2 Exit Boundary Conditions

If the flow leaving the computational domain is subsonic, then three eigenvalues are positive,
and one eigenvalue is negative. This means that three characteristic waves (the entropy
wave, one pressure wave, and the vorticity wave) are leaving the computational domain and
are calculated using the interior flow algorithm, while the fourth characteristic wave (the
second pressure wave) is entering the computational domain from downstream and must be
specified. At the computational exit, the average static pressure or the upstream travelling
Reimann invariant can be specified to represent the upstream-propagating pressure wave.
Ideally, the upstream travelling Reimann invariant (which represents the proper quasi-two-
dimensional nonreflecting boundary condition) should be specified instead of the average
static pressure (which can be reflective on truncated computational domains). For unsteady
flow simulations, which are calculated as perturbations to a steady flow solution, it is indeed
convenient to specify the upstream travelling Reimann invariant. For steady flow simulations,
however, the information needed to accurately specify the Reimann invariant (velocity and
speed of sound) is not always known, necessitating the use of the average static pressure as
the exit boundary condition.

Implicit Exit B.C.’s

The implicit exit boundary conditions are solved in a manner similar to the implicit boundary
conditions used at the inlet boundary. The equations of motion are premultiplied by the
matrix of left eigenvectors and the exit selection matrix, L., which is written us

1 0 0 O
2 (2.46)
0 0 0 O
The vector containing the exit boundary variables, @, is given by
0
¢, = 8 (2.47)
P (R7)

As before, the implicit boundary conditions described above represent approximate, quasi-
two-dimensional, nonreflecting boundary conditions.

Explicit Exit B.C.’s

The development of the steady, explicit, exit boundary conditions are again based on the
work of Giles [25,35]. The outline of the theory is similar to that explained above for the
explicit inlet boundary conditions.

The average change in the upstream-moving characteristic is based on the specification
of an average exit pressure

§by = —2 (P = Pesit) (2.48)
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where P..; is the specified exit pressure. The local changes in the upstream-propagating
characteristic are calculated as a function of the downstream-moving characteristics. Thus,
the discrete Fourier transforms of the vorticity and downstream-propagating pressure waves
are calculated.

1 X —12njk

Wop = -N—jglw%ezp( N ) (2.49)
1 X —i27jk

Wi = —N—gw;;jemp( N ) (2.50)

According to Giles [35] the correct value of the upstream-propagating characteristic variable

is given by oM M
T (84 y

Wyks = Wok —
: a—M, a—M,

Upon transforming back to the physical domain, this becomes

W3k (2.51)

NE 2wk
Wyjs = Z WyksETP N (252)
k=—N/2+1
The ideal local change is given by
611]4]'5 = Wy4ys — Wy _ (253)

and the total change in the steady upstream-propagating characteristic is given by
Swy; = o (6w, + Swajs) (2.54)

Similar to the explicit unsteady inlet boundary condition procedure, fully two-dimensional,
unsteady exit boundary conditions can be implemented into the numerical analysis. The
incoming characteristic at the exit boundary is determined by

w'1

ow' 0| w

at“+[0 Utoo O um]@ w'Z =0 (2.55)
'Ll)’.;

Equation 2.55 is solved for w’s along the exit boundary by inverting a scalar tridiagonal
matrix, where implicit second difference dissipation is added to the equation to prevent odd-
even decoupling. As at the inlet, for waves leaving the computational domain at an angle 6 to
the boundary, the explicit two-dimensional boundary conditions will produce an artificially
reflected wave of amplitude O(8?), compared to O(9) for the quasi-two-dimensional boundary
conditions [25,35].

More details on the inlet, exit, and surface boundary conditions can be found in Ref. 30.

2.3.3 Periodic Boundary Conditions

The periodic boundary conditions in the numerical analysis are solved implicitly by using
the metric information and dependent flow variables from the grid corresponding to other
side of the boundary. The implicit solution technique for the periodic boundary conditions
is necessary to obtain time-accurate solutions.
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2.3.4 Zonal Boundary Conditions

In the two- and three-dimensional procedures, the use of overlaid grids requires the appli-
cation of zonal boundary conditions. Dirichlet conditions, in which the time rate change in
the conserved variable vector, Q, is set to zero, are imposed at the overlaid boundaries of
the O- and H-type grids. The flow variables of Q at these zonal boundaries are explicitly
updated after each time step by interpolating values from the adjacent grid. Because of the
explicit application of the zonal boundary conditions, large time steps necessitate the use
of more than one Newton iteration to maintain time accuracy. The accuracy of information
transfer between adjacent grids can also be enhanced by increasing the amount of overlap re-
gion between the O- and H-type grids. The zonal boundary conditions are non-conservative,
but the current implementation of the zonal boundary conditions has been shown to yield
satisfactory results for transonic and supersonic flows [36]. Further information describing
the zonal boundary conditions can be found in Ref. 37.
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3. Numerical Results

The geometry considered during this effort has been studied in previous investigations
(e.g., Refs. 38-30) and corresponds to a thick, highly-cambered model Exit Guide Vane
(EGV) cascade. It 1s constructed by superimposing the thickness distribution of a NACA
four-digit series airfoil, i.e.,

T(z) = Hy[2.969z"/% —1.260z — 3.5162 + 2.843z° — 1.015z4]), 0<z <1, (3.1)
on a thirteen percent circular-arc camberline. The camber distribution is given by
C(z)= Ho— R+[R* = (z - 05)%]*, 0<z <1, (3.2)

where Hg > 0is the height of the circular-arc camber line at midchord and R = (2H¢)1(0.25+
HZ) is the radius of the camber line. The surface coordinates of the blade are therefore given
by

(X,Y)% = [z F0.5T(z)sind , C(z) £0.5T(z)cosf], 0<z <1, (3.3)

where 6 = tan~!(dC/dz), and the superscripts + and — refer to the upper and lower surfaces
of the blade. The wedge-shaped trailing edge of the original NACA thickness distribution
is replaced by a round trailing edge which is assumed to be simultaneously tangent to the
original trailing-edge location (at z = 1) and the upper and lower surfaces of the airfoil,
thereby producing a unique trailing-edge circle. The EGV blade is defined using Egs. (3.1)-
(3.3), where the values of the parameters are: Hr = 0.12, Ho = 0.13. The geometry is
illustrated in Figs. 1 and 2. The blade stagger is 15 degrees and the gap-chord ratio, G,
is 0.60. The upstream steady flow angle is ay = 55 degrees measured counter-clockwise
from the axial direction. This corresponds to a moderate incidence angle of approximately
5 degrees. This incidence angle is chosen in order to generate a small-scale leading-edge
separation in the undisturbed solution.

Suction-surface transition is specified at s/s;.. =~ 0.20, where s is the arc-length distance
measured along the blade surface from the leading-edge point, which is defined as the location
of minimum z on the blade surface; ;.. is the trailing-edge arc length measured along the
suction surface. The quantity z is the distance aft of the leading edge measured along
the machine axis. Transition on the pressure surface is assumed to occur just aft of the
leading-edge stagnation point, in order to eliminate any possibility of pressure-surface cove
separation, which might induce additional unsteadiness within the flow field. The free-
stream turbulence level, which mildly influences the boundary layer through the low Reynolds
number correction in the turbulence model, is assumed to be 10 percent. This large value is
chosen in an attempt to suppress the suction-surface trailing-edge separation that is predicted
to arise at the incidence angle at which the stator is operating, so that both the perturbation
to the base undisturbed flow produced by the aft separation and any unsteadiness that might
be associated with the separation is minimized.

The wake disturbance introduced in the wake-stator interaction calculations is modeled
by introducing a wake-like profile at the upstream boundary of the mesh. The wake deficit
at the upstream boundary is defined by a hyperbolic secant function. The width of the
wake is 10% of the blade circumferential spacing, where the width is defined as the distance
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between points in the profile at which the value of the function is 10% of its maximum value.
The deficit is applied only to the axial component of velocity in the frame of reference of
the rotor, and is then transformed to the stator frame of reference by adding to the deficit
profile the circumferential velocity component representing the rotation of the upstream ro-
tor. Variations in the other physical quantities (e.g., pressure, density, etc.) at the upstream
boundary are obtained as part of the solution using the characteristic conditions at the
upstream boundary described in the previous section.

The Reynolds number, Re, for the present calculations is chosen such that the assumption
of laminar flow in the neighborhood of the suction-surface leading edge is a reasonable one,
based on the local value of the Reynolds number scaled by the leading-edge radius. The
Reynolds number based on chord for the calculations carried out here is 300,000; based
on leading-edge radius the value 1s Re = 4740. Because of the locally adverse pressure
gradient and the associated suction-surface separation bubble, it is realistic to allow for
transition within or just aft of the separation bubble. In the present case suction-surface
transition is imposed at a fixed surface location a small distance upstream of the time-
averaged reattachment location predicted for the case without the rotor wake disturbance.
This aspect of the present investigation needs to be examined in greater detail in the future
to determine how it influences the conclusions that have been obtained.

The analysis will first be applied in an effort to obtain solutions in the absence of the
upstream wakes. After the baseline undisturbed solution has been obtained, the same con-
figurationwill be subjected to unsteady wakes convected downstream from the upstream
bourdary and the interaction of the wake with the suction-surface boundary layer will be ex-
amined in detail. All of the calculations were carried out for many periods (O(15—30)) in the
case where the wake disturbance is present, and for many characteristic times (tc = C/Uco,
where C is blade chord and Us, is the velocity magnitude far upstream of the cascade) in
the case for which the wake disturbance is absent.

It is important to note that the present mesh, while using many more grid points in
the inner O-mesh region (551 points around the blade, 81 points normal to the blade; see
Figs. la-c) than is typically employed for similar calculations, it still falls far short of being
able to resolve all of the pertinent features of the flows considered herein. In particular, in
deciding to focus on the suction-surface Jeading-edge region grid, resolution was sacrificed
elsewhere on the blade surface. This is particularly noticeable in the neighborhood of the
trailing edge and on the pressure surface of the blade.

Two different wake deficits are considered: 5% and 30%. The former represents a very
weak wake and would correspond to an unrealistically large rotor-stator axial spacing for
modern gas-turbine compressors. However, it serves to illustrate the sensitivity of the sepa-
ration region to disturbances, and provides a baseline against which the stronger deficit case
can be judged. The latter wake deficit corresponds to a rotor-stator spacing of approximately

0.5 chords [3].

3.1 Flow in the Absence of Rotor Wakes
The undisturbed flow solution was obtained on a mesh that is highly refined in the

vicinity of the undisturbed flow, suction-surface separation bubble; see Figs. la-c. At the
blade surface the minimum streamwise mesh spacing is As/si. =~ 0.0004 and the normal

16




mesh spacing at the first point away from the wall, which is maintained at a constant value
everywhere along the airfoil surface, is An /C =~ 5 x 107%, where C is the blade chord. This
produces a mesh for which the average y* at the first point away from the surface over
the entire turbulent region is ©(0.1), and places on the order of 20-50 points within the
laminar boundary layer, depending on the streamwise location. The temporal stepsize used
for the undisturbed flow calculations is the same as that used for the wake-stator interaction
calculations described below.

The time-averaged streakline pattern is shown in Figs. 2a-c. A trailing-edge separation
bubble spanning approximately 20 percent of blade chord is present. These calculations were
carried out with a relatively coarse mesh at the trailing edge. This appears to result in local
numerical viscosity of sufficient magnitude to suppress any trailing-edge shedding that might
otherwise occur, producing a steady trailing-edge separation. If a finer mesh was used in the
vicinity of the trailing edge, unsteady vortex shedding and a possible unsteady interaction
between the shedding and the trailing-edge separation bubble would be expected to occur,
and to produce relatively mild unsteady loading fluctuations, as demonstrated in Ref. 3, for
example. The suppression of the trailing-edge vortex shedding is expected to be of negligible
consequence to the local flow structure in the neighborhood of the leading-edge separation,
which is the focus of this investigation.

A thin leading-edge separation bubble is present in the solution, as can be seen more
clearly in Figs. 2b and c, where the time-averaged separation and reattachment points are
denoted by_S and R, respectively, and the fixed transition-point location is denoted by T'.

The flow in the neigborhood of the leading-edge separation bubble is not steady. Figures
3a-d show the time histories of the surface pressure P and skin-friction coefficient Cy at
four points on the blade suction surface, corresponding to locations that are: (1) slightly aft
of the time-averaged separation point, (2) just downstream of the specified transition onset
location and upstream of the time-averaged reattachment point location, (3) approximately
midway between the transition location and the time-averaged reattachment point, and (4)
just downstream of the time-average reattachment location. The plot scales were selected
to facilitate comparison between the magnitude of the unsteady fluctuations amongst these
locations and for later comparison with the results obtained with the wake disturbance
included.

The degree of unsteadiness is significantly larger at the two downstream points (3 and 4)
than at the upstream points (1 and 2). We believe that this is due to unsteady shedding of
vortices from the rear of the separation bubble, evidence of which can be seen in Fig. 4, which
shows the instantaneous streaklines in the vicinity of the leading-edge separation bubble
associated with the disturbance velocity field. The disturbance velocity field is obtained by
subtracting the time-averaged components of the velocity field from the instantaneous values
of the velocity components at one instant in time. The resulting disturbance field makes it
easier to identify features introduced by unsteadiness in the flow, although the interpretation
must be made carefully. In the “snapshot” shown in Fig. 4 there is a series of distinct vortices
convecting downstream from the bubble. They appear to grow after shortly after forming
and after moving downstream some distance they appear to decay. The decay is most likely
an artifact of the increased numerical dissipation that is encountered downstream of the
bubble where the streamwise grid spacing increases (see Fig. 1). In addition, an unsteady
disturbance is evident within and around the region of the bubble, centered in the middle of
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the semicircular pattern of streaklines to the left of the center of the plot. This disturbance is
believed by the authors to be a product of pulsations of the bubble as vortices are produced
and ejected from within it. Further study of the details of the unsteady flow structure is
needed to determine whether or not this conjecture is correct.

3.2 Flow in the Presence of Rotor Wakes

The undisturbed solution discussed above was used as the baseline for two sets of calcula-
tions performed in the presence of simulated rotor wakes, where the two cases differed in the
specified magnitude of the wake velocity deficit. In particular, deficits of 5 and 30 percent of
the local (inlet plane) axial velocity were considered. The reduced temporal frequency of the
disturbance was the same for both cases. The reduced temporal frequency of the incident

wakes is given by
aU, wheel

G 7
where ¢ = =27, Uyheat = 1.20 and G = 0.60 producing a reduced frequency of w = 12.57.

w = —

(3.4)

Results for 5 percent wake deficit

The wake can be easily visualized by considering the disturbance flow resulting from its
imposition on the baseline flow. The disturbance velocity field in the region between the
inflow boundary and the cascade leading edge at one instant of time is shown in Fig. 5.
Note that the disturbance to the baseline flow appears as a stream of fluid moving from the
suction surface towards the pressure surface.

The effect of the wakes on the blade surface pressure and surface shear stress coeflicient
are shown in Figs. 6a and b, where time histories are presented at four different stations
on the suction surface over a time span of 2.5T, where T' = 1.0 in the nondimensional time
variable, 7. The effect of the passing wake is evident at all four stations. At the three
most forward stations a small rise in pressure and a concommitant decrease in the shear
stress occurs as the wakes pass those stations. At the farthest aft station the nature of the
unsteadiness is quite different from that observed at the other three stations, with the former
having much more frequency content than the latter. The difference is believed to be due
to the passage of vortices shed upstream by the separated boundary layer, as will be shown
more clearly later. Comparing the results presented in Fig. 6 with those of Fig. 3 shows
that the amplitude of the pressure and skin-friction oscillations that are associated with the
separation region in the undisturbed flow is reduced by the passage of the periodic wakes.

The structure and evolution of the wakes in the region upstream of the cascade and within
the blade passages is shown in Fig. 7a-f where a series of instantaneous vorticity contours
are presented, showing the convection of the wakes during a single period, T'. Although this
figure shows the results for the 30 percent wake deficit calculation, the 5 percent deficit result
looks nearly identical if the correct contour levels are selected, since the flow conditions and
disturbance frequency are the same in both cases. The wakes undergo some smearing as they
are convected downstream, as evidenced by the slight spreading of the wake contours with
increasing axial distance. The wakes are distorted as they convect within the blade passage
rotating in the counter-clockwise direction due to the cross-passage velocity gradient (i.e.,
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faster moving fluid on the suction surface than on the pressure surface). In addition, there
is some apparent distortion of the wakes at the interface between the outer H-mesh and the
inner O-mesh, as seen in Fig. 7. An assessment of the magnitude of these and other possible
numerically-induced effects on the flow features should be carried out in the future.

A series of instantaneous disturbance streaklines for the 5 percent wake deficit case is
shown in Fig. 8a-f. They display periodic behavior in the larger-scale features (comparing
Figs. 8a and 8f), although the small-scale features are not periodic. This may be due to
not carrying out the numerical solution far enough in time, or it may be a feature of this
complex flow. Comparing Fig. 8 with Fig. 4 reveals some important distinctions between the
structure of the two flows. In the undisturbed case shown in Fig. 4 the series of downstream
vortices appears to initiate some distance downstream of the structure at the center of the
semi-circular feature that is observed. In the case where the wake is present (Fig. 8) the
vortices appear to emanate from the center of the similar structure, which changes shape
dramatically during the cycle. In addition, the vortical structures appear to be larger in
the latter case. In both cases the spacing between the vortices increases significantly upon
leaving the neighborhood of their apparent origin. How much of this is due to the change in
axial grid resolution in that region is unclear, and this needs to be examined in future work.

Results for 30 percent wake deficit

The effect of the wakes on the blade surface pressure and surface shear stress coefficient
are shown in Figs. 9a-d, where time histories are presented at a total of seven different
stations on the suction surface over a time span of 2.5T where, as before, T = 0.20 in
the nondimensional time variable, 7. The signature of the passing wake is evident at all
seven stations. Whereas for the 5 percent wake case the behavior of the histories changed,
particularly at the furthest aft station at s /st.e. & 0.201, due to the shedding vortices passing
that station, the behavior remains very much similar at all seven stations for the 30 percent
wake deficit case. It is also notable that the signature of the wakes in the latter case shows
the distinct presence of a second harmonic that is nearly negligible in the 5 percent wake
deficit results. The source of the second harmonic is made clear by examining the disturbance
streamlines for the 30 percent wake deficit.

The structure and evolution of the wakes in the region upstream of the cascade and
within the blade passages was shown in Fig. 7a-f for the 30 percent wake deficit case. A
series of instantaneous disturbance streaklines for the 30 percent wake deficit case 1s shown
in Fig. 10a-f. A very strong feature of the flow field in this case is the presence of large
cell-like structures that are counter-rotating with respect to their immediate neighbors as
they convect through the blade passage. The effect of these cells on the separation region
is very strong, with the vortex shedding exhibited in the undisturbed and mild wake-deficit
case almost completely suppressed.

In Figs. 11a and b the time-averaged surface pressure and shear stress distributions are
shown for the undisturbed case, and for the 5 and 30 percent wake deficit cases. The good
overall agreement between the three results indicates that nonlinear effects are relatively
weak in the two wake-stator interaction calculations, although the 30 percent wake deficit
case shows somewhat more pronounced differences with the undisturbed case than does the
5 percent wake. This is consistent with the stronger disturbance associated with the former
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case, for which the degree of nonlinearity is expected to be greatest.
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4. Conclusions and Recommendations for Future ‘Work

The results obtained during this study indicate that the use of very fine grids captures
small-scale unsteady flow structures associated with the wake-stator suction-surface inter-
action. Even in the absence of rotor wakes the leading-edge separation bubble displays
unsteady shedding of vortices. The presence of wakes, even when the wake velocity deficit
is small, can significantly alter the unsteady boundary-layer behavior. However, when the
velocity deficit becomes stronger, the unsteady boundary-layer undergoes a significant alter-
ation in behavior, with the vortex shedding suppressed relative to the undisturbed or weak
wake deficit cases in the present calculations.

The following tasks are recommended as potentially frutiful tasks for follow-on to this
effort:

1.

Conduct a grid/timestep study to determine the effect of grid and timestep variations
on the present solutions;

Extend the region of high grid resolution to encompass the entire suction surface,
at minimum, to alleviate some of the concerns expressed herein about the effect of
increased numerical dissipation downstream of the fine-grid region in the vorticies form
in the separation region;

Assess the effect of the O-H grid overlap on solutions of rotor-stator interaction prob-
lems, and seek ways to lessen those effects;

Examine different geometries and a broader range of parameters, e.g., Reynolds num-
ber, incidence angle, disturbance frequency and amplitude;

Examine the response of the flow to the incoming wakes; this can help with efforts
to model unsteady deterministic effects in turbomachinery using analyses such as the
average-passage approach of Adamczyk [41-43].

References

1. Hodson, H. P., “Modeling Unsteady Transition and Its Effects on Profile Loss,” ASME

J.

of Turbomachinery, Vol. 112, No. 4, pp. 691-701.

2. Kerrebrock, J. L. and Mikolajczak, A. A., “Intra-stator Transport of Rotor Wakes and
its Effect on Compressor Performance,” ASME Paper 70-GT-39, 1970.

3. Valkov, T. V., “Control of the Unsteady Flow in a Stator Blade Row Interating with
Upstream Moving Wakes,” MIT Gas Turbine Laboratory Report GTL #215, January
1993.

4. Valkov, T. V. and Tan, C. S., “Control of the Unsteady Flow in a Stator Blade Row
Interating with Upstream Moving Wakes,” ASME Paper 93-GT-23, 1993.

21




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Peridier, V. J., Smith, F. T. and Walker, J. D. A., “Vortex-induced Boundary-layer
Separation. Pt. 1, The Limit Problem Re— 00,” J. Fluid Mech., Vol. 232, Nov. 1991, pp.
99-131.

Peridier, V. J., Smith, F. T. and Walker, J. D. A., “Vortex-induced Boundary-layer
Separation. Pt. 2, Unsteady Interacting Boundary-layer Theory,” J. Fluid Mech., Vol.
232, Nov. 1991, pp. 133-165.

Reisenthel, P. H. and Childs, R. E., “A Study of Reynolds Number Effects on Incipient
Leading Edge Stall,” ATAA Paper 94-2339, 1994.

Reisenthel, P. H., “Further Results on the Reynolds Number Scaling of Incipient Leading
Edge Stall,” AIAA Paper 95-0780, 1995.

Bhaskaran, R., and Rothmayer A. P., “A Navier-Stokes Solution for the Leading-Edge
Flow Past Pitching and Oscillating Airfoils, in preparation, 1995.

Carr, L., “Progress in Analysis and Prediction of Dynamic Stall,” J. Aircraft, Vol. 25,
Jan. 1988, pp. 6-17.

Carr, L. and McCroskey, W. J., “A Review of Recent Advances in Computational and
Experimental Analysis of Dynamic Stall,” International Union of Theoretical and Applied
Mechanics Symposium on Fluid Dynamics of High Angle of Attack,” Tokyo, Japan, Sept.—~
1992. -

Smith, F. T., “Concerning Dynamic Stall,” The Aeronautical Quarterly, Vol. XXXIII,
Part 4, Nov. 1982, pp. 331-352.

Smith, F. T., “Finite-time Break-up can Occur in Any Unsteady Interacting Boundary
Layer,” Mathematika, Vol. 35, No. 70, 1988, pp. 256-273.

Elliott, J. W. and Smith, F. T., “Dynamic Stall Due to Unsteady Marginal Separation,”
J. Fluid Mech., Vol. 179, 1987, pp. 489-512.

Doligalski, T. L., “CFD Challenges for the U.S. Army,” AIAA Paper 93-3295, 1993.

Choudhuri, P. Ghosh, Knight, D. D. and Visbal, M. R, “Two-Dimensional Unsteady
Leading-Edge Separation on a Pitching Airfoil,” AIAA J., Vol. 32, No. 4, April 1994, pp.
673-681.

Mehta, U. B. and Zalman, L., “Starting Vortex, Separation Bubbles and Stall: A Nu-
merical Study of Laminar Unsteady Flow Around an Airfoil,” J. Fluid Mech., Vol. 67,
Pt. 2, 1975, pp. 227-256.

Ghia, K.N., Yang, J., Osswald, G.A. and Ghia, U, “Study of the Role of Unsteady
Separation in the Formation of Dynamic Stall Vortex,” ATAA Paper 92-0196, 1992.

Visbal, M. R., “Dynamic Stall of a Constant-Rate Pitching Airfoil, J. Aircraft, Vol. 27,
No. 5, pp. 400-407.

22




20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Patterson, M. T. and Lorber, P. F., “Computational and Experimental Studies of Com-
pressible Dynamic Stall,” J. of Fluids and Structures, Vol. 4, pp. 259-285, 1990.

Verdon, J. M., “Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and
Aeroacoustic Applications,” AIAA J., Vol. 31, No. 1, Jan. 1993, pp. 235-250, pp. 235-250.

Dring, R. P., Joslyn, H. D, Hardin, L. W. and Wagner, J. H., “Turbine Rotor-Stator
Interaction,” J. Engrg. for Power, Vol. 104, No. 4, 1982, pp. 729-742.

Hodson, H. P., “An Inviscid Blade-to-Blade Prodiction of Wake-Generated Unsteady
Flow,” ASME Paper 84-GT-43, 1984.

Rai, M. M., “Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and
Overlaid Grids,” AIAA J. of Propulsion and Power, Vol. 3, No. 5, Sept.-Oct. 1987.

Giles, M., “UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Tur-
bomachinery,” GTL Report No. 205, Gas Turbine Laboratory, Massachusetts Institute
of Technology, 1991.

Baldwin, B. S. and Lomax, H., “Thin-Layer Approximation and Algebraic Model for
Separated Turbulent Flows,” AIAA Paper 78-257, 1978.

Dwahan, S., and Narasimha, R., “Some Properties of Bourdary Flow During Transition
from Laminar to Turbulent Motion,” Journal of Fluid Mechanics, Vol. 3, 1958, pp. 418-
436.

Chakravarthy, S. R. and Osher, S., “Numerical Experiments with the Osher Upwind
Scheme for the Euler Equations,” AIAA Paper 82-0975, 1982.

Dorney, D. J., and Verdon, J. M., “Numerical Simulations of Unsteady Cascade Flows,”
ASME Paper 93-GT-87, Cincinnati, OH, 1993, also to be published in ASME Journal of

Turbomachinery.

Dorney, D. J., Numerical Simulations of Unsteady Flows in Turbomachines, Ph.D. thesis,
The Pennsylvania State University, University Park, PA, 1992.

Dorney, D. J., Davis, R. L., and Edwards, D. E., “Investigation of Hot Streak Migration
and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows, Final
Report,” N000140-88-C-0677, April, 1992.

Sorenson, R. L., “ A Computer Program to Generate Two-Dimensional Grids about
Airfoils and Other Shapes by the Use of Poisson’s Equation,” NASA TM-81198, 1980.

Chakravarthy, S. R., “Euler Equations- Implicit Schemes and Implicit Boundary Condi-
tions,” AIAA Paper 82-0228, 1982.

Rai, M. M. and Chaussee, D. S., “ New Implicit Boundary Procedures - Theory and
Applications,” AIAA Journal, pp. 1094-1100, 1984.

23




35.

36.

37.

38.

39.

40.

41.

42.

43.

Giles, M. B., “Nonreflecting Boundary Conditions for Euler Equation Calculations,”
AIAA Journal, Vol.28, No. 12, December, 1990, pp. 2050-2058.

Steinke, R. J., “Application of a Two-Dimensional Unsteady Viscous Analysis Code to a
Supersonic Throughflow Fan Stage,” NASA TM 4141, November, 1989.

Rai, M. M., “Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and
Overlaid Grids,” AIAA Journal of Propulsion and Power, Vol. 3, No. 5, September-
October 1987.

Verdon, J. M. and Hall, K. C., “Development of a Linearized Unsteady Aerodynamic
Analysis for Cascade Gust Response Predictions,” NASA CR 4308, July 1990.

Verdon, J. M., Barnett, M., Hall, K. C. and Ayer, T. C., “Development of Unsteady
Aerodynamic Analyses for Turbomachinery Aeroelastic and Aeroacoustic Applications,”
NASA CR 4405, October 1991.

Barnett, M., Verdon, J. M. and Ayer, T. C., “An Analysis for High Reynolds Number
Inviscid/Viscid Interactions in Cascades,” NASA CR 4519, May 1993.

Adamczyk, J. J., “Model Equation for Simulating Flows in Multistage Turbomachinery,”
NASA TM-86869, November 1984.

Adamczyk, J. J., “A Model for Closing the Inviscid Form of the Average-Passage Equa-
tion System,” NASA TM-87199, 1986.

Adamczyk, J. J., Celestina, M. L., Beach, T. A. and Barnett, M., “Simulation of Three-
Dimensional Viscous Flow within a Multistage Turbine, Transactions of the ASME, Jour-
nal of Turbomachinery,” Vol. 112, No. 3, 1990, pp. 370-376.




(b)

Figure 1: Overlaid O-H grids used for EGV calculations: (a) complete grid system; (b) detail
view of O-grid; (c) detail view of fine-grid region.




Figure 2: (a) Time-averaged streakline pattern for EGV in absence of wake disturbances:
Re = 300,000, o; = 55 deg.




Figure 2: (b) Detail of time-averaged streakline pattern for forward portion of EGV in
absence of wake disturbances.




Figure 2: (c) Detail of time-averaged streakline pattern in vicinity of leading-edge separation
of EGV in absence of wake disturbances.
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Figure 3: (a) Surface-pressure and (b) surface shear-stress time histories at two axial stations

for undisturbed flow in an EGV cascade, Re = 300,000, M; =~ 0.42:

: 5[5t = 0.163,

~ 4% s/sq.. aft of time-averaged separation point; — — —: s/s¢e. = 0.201, just downstream
of start of transition, upstream of time-averaged reattachment location.
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Figure 3: (c) Surface-pressure and (d) surface shear-stress time histories at two axial stations
for undisturbed flow in an EGV cascade, Re = 300,000, M; =~ 0.42: : 8/t = 0.217,
between transition and time-averaged reattachment locations; — — —: s /St = 0.237, near
time-averaged reattachment location.




Figure 4: Instantaneous disturbance streakline pattern for EGV in absence of rotor wakes:
Re = 300,000, o; = 55 deg.
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Figure 5

wake deficit calculation.
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Figure 6: (a) Surface-pressure and (b) surface shear stress time histories at four axial stations
for flow in EGV cascade exposed to wakes with 5 percent velocity deficit; Re = 300,000, M; ~
0.42, a; = 55 deg: : 8/S4.. =~ 0.100, upstream of the time-averaged separation location;
— — —: 5/ste &~ 0.129, just upstream of the time-averaged separation location; - - - - - - :
s/st.. =~ 0.163, about midway between the time-averaged separation point and the fixed
transition location; — - — - — : 5/ste ~ 0.201, just downstream of the start of transition,
and upstream of the time-averaged reattachment location.
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Figure 7: Disturbance vorticity for 30% wake deficit EGV calculation; (a) T + 0T; (b)
T +0.2T; (c) T + 0.4T; (d) T + 0.6T; (e) T +0.8T; (f) T + 1.07.




N Z

Figure 8: Instantaneous disturbance streakline patterns for EGV in presence of rotor wakes
with 5 percent velocity deficit: (a) T 4 0T; (b) T + 0.2T; (b) T + 0.4T; (b) T + 0.6T; (b)
T 4 0.8T; (b) T + 1.0T.
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Figure 9: Surface-pressure time histories for flow in EGV cascade exposed to wakes with
30 percent velocity deficit at: (a) four upstream axial stations: : 8/ste. = 0.100,
upstream of the time-averaged separation location; — — —: s /St.e. & 0.129, just upstream
of the time-averaged separation location; - - - - - - : /4.0 ~ 0.163, about midway between the
time-averaged separation point and the fixed transition location; — - — - — : 8/ste = 0.201,
just downstream of the start of transition, and upstream of the time-averaged reattachment
location; (b) three downstream axial stations: : 8/s1.. =~ 0.217, approximately midway
between the start of transition and the time-averaged reattachment location; — — —
8/s... =~ 0.237, approximate time-averaged reattachment location; - - - - - - : 5/81e ~ 0.260,

just downstream of the end of the fixed transition region.
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Figure 9: (continued) Surface shear stress time histories for flow in EGV cascade exposed to
wakes with 30 percent velocity deficit at: (c) four upstream axial stations: D 8/Ste. &
0.100, upstream of the time-averaged separation location; — — —: s /St = 0.129, just
upstream of the time-averaged separation location; - - - - - - : 5/5¢e. = 0.163, about midway

between the time-averaged separation point and the fixed transition location; — - — - —
. §/s1e. = 0.201, just downstream of the start of transition, and upstream of the time-
averaged reattachment location; (d) three downstream axial stations: : 8/81e =~ 0.217,
approximately midway between the start of transition and the time-averaged reattachment
location; — — —: /8¢ = 0.237, approximate time-averaged reattachment location; - - - -
- -1 §/s4e = 0.260, just downstream of the end of the fixed transition region.
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Figure 10: Instantaneous disturbance streakline patterns for EGV in presence of rotor wakes
with 30 percent velocity deficit: (a) T + 0T'; (b) T + 0.2T; (b) T + 0.4T; (b) T + 0.6T'; (b)
T +0.8T; (b) T + 1.0T.
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Figure 11: (a) Surface-pressure and (b) surface shear-stress distributions for EGV cascade:
. undisturbed flow; - - - - - - : 5 percent wake deficit; — — —: 30 percent wake

deficit.




